

Seminário Final de Acompanhamento e Avaliação

USO DE PEPTÍDEOS COMO ALTERNATIVA TERAPÊUTICA NA FIBROSE PULMONAR

Fundação de Apoio à Pesquisa do Distrito Federal

Anamélia L. Bocca – coordenadora UnB

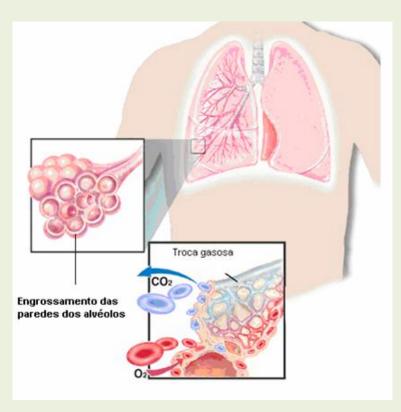
Celso Augusto M Silva — colaborador - UnB Fabiana Pirani Carneiro - colaboradora - SESDF Florêncio Figueiredo — colaborador - UnB Verônica Amado — colaboradora - UnB Viviane Lozano — colaboradora - SESDF

Karina Simon Smidt – Aluna de doutorado durante a execução do projeto

Luísa C. Coelho – aluna de Iniciação científica

Recurso aprovado x gasto

Rubrica	recebido	gasto
capital	42.000,00	41.240,00
custeio	145.750,00	145.750,00
total	187.750,00	187.000,00

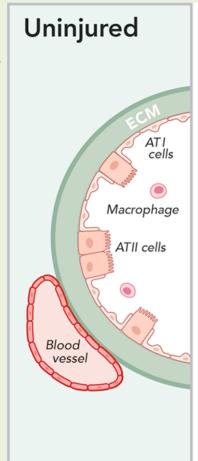


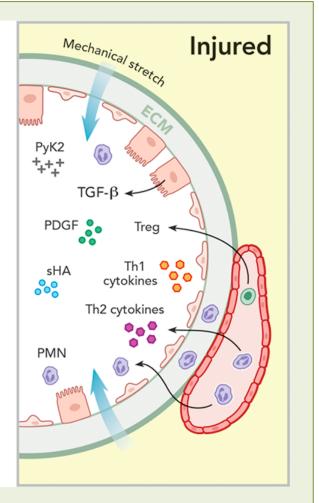
Breve contextualização do problema e relevância do tema

Fibrose Pulmonar

A fibrose pulmonar é uma doença crônica, com uma taxa de mortalidade importante, refratária a tratamentos e que demanda atendimento ao paciente nos diversos níveis de complexidade do sistema de saúde.

É uma sequela de um grupo heterogêneo de doenças pulmonares caracterizadas pela destruição progressiva e irreversível da arquitetura do pulmão causado pela formação de cicatriz (fibrose) que leva a perda da função pulmonar





Até o momento não existe uma abordagem terapêutica que minimize ou reverta a formação de fibrose no tecido pulmonar.

Tratamento com drogas anti-fibróticas

Nintedanib e Pirfenidona

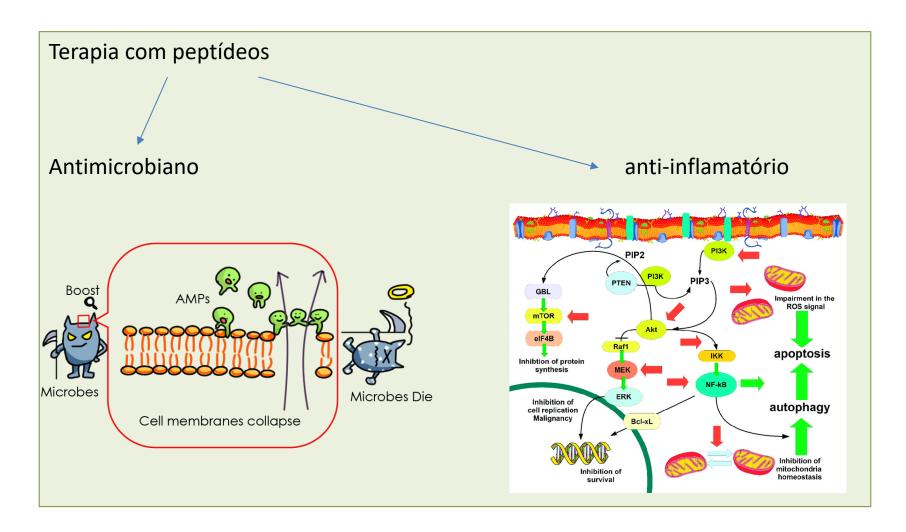
Exercícios para aumentar a função pulmonar

Baixa eficiência na manutenção da qualidade de vida dos pacientes

Comorbidades

Internações frequentes

Transplante pumonar



Terapia com peptídeos – (2014-2019) – 7% medicamentos baseados em peptídeos 26% medicamentos biológicos

Table 1. Peptide-based drugs approved by the Food Drug Administration (FDA) (2015–2019) [3-6].

Year Active Ingredient Trade Name 2015 Insulin degludec Tresiba®		Indication	Features		
		Diabetes	Modified insulin with an aa deletion and a hexadecanedioic acid via γ-Glu at the Lys (B29)		
2015	Ixazomib Ninlar [®]	Multiple myeloma	N-Acylated, C-boronic acid dipeptide		
2016	Adlyxin Lixisenatide®	Diabetes	44 aa GLP-1 peptide with (Lys) ₆ at the C-terminal		
2017	Abaloparatide Tymlos®	Osteoporosis	34 aa analog of parathyroid hormone-related protein		
2017	Angiotensin II Giapreza®	Hypotension	Natural octapeptide		
2017	Etelcalcetide Parsabiv®	Hyperparathyroidism	Ac-DCys-DAla-(DArg)3-DAla-DArg-NH2 linked to L-Cys through a disulfide bridge		
2017	Macimorelin Macrilen®	Growth hormone deficiency	Pseudotripeptide N-formylated		
2017	Plecanatide Trulance [®]	Chronic idiopathic constipation	16 aa with two disulfides		
2017	Semaglutide Ozempic [®]	Diabetes	GLP-1 peptide (31 aa in the chain) with hexadecanedioic acid via γ-Glu and mini PEG at Ly		
2018	177Lu DOTA-TATE Lutathera®	Neuroendocrine tumors, theranostic	177Lu chelated by DOTA bound to Tyr3-octreotate		
2019	68Ga DOTA-TOC	Neuroendocrine tumors, diagnostic	68Ga chelated by DOTA bound to Tyr3-octreotide		
2019	Afamelanotide Scenesse®	Skin damage and pain	13 aa lineal peptide analog of α-MSH		
2019	Bremelanotide Vyleesi [®]	Women hypoactive sexual desire	7 aa cyclic peptide analog of α-MSH		
2019	Enfortumab Vedotin-Ejfv PADCEV®	Cancers expressing Nectin-4	ADC with a synthetic analog of the marine natural peptide dolastatin 10		
2019	Polatuzumab Vedotin-Piiq Polivy®	Diffuse large B-cell lymphoma	ADC with a synthetic analog of dolastatin 10 (5-residue peptide alcohol)		

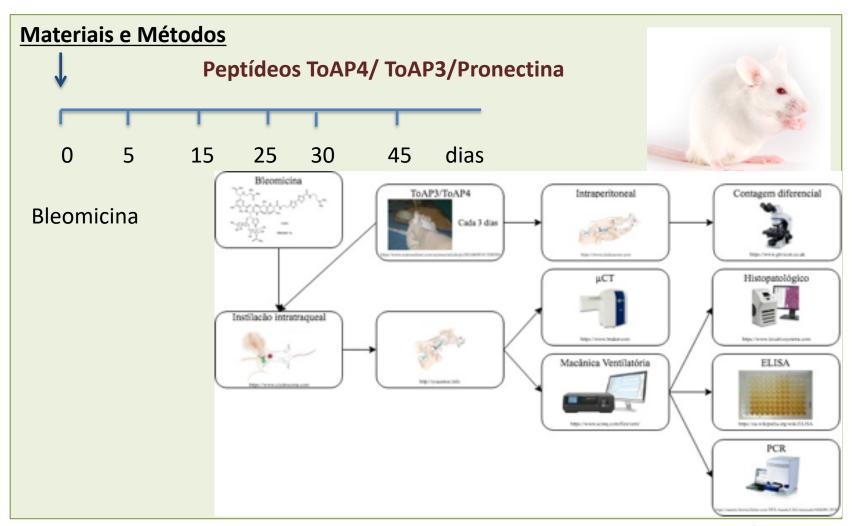
Objetivos propostos x realizados

• O objetivo geral deste trabalho é avaliar a segurança farmacológica da utilização de peptídeos anti-inflamatórios no retardo do estabelecimento da fibrose pulmonar. A partir desses achados pretende-se propor um esquema terapêutico no tratamento da fibrose pulmonar que poderá ser testado em parceria com industrias farmacêuticas, na geração de, pelo menos, uma molécula a ser testada em futuros ensaios clínicos

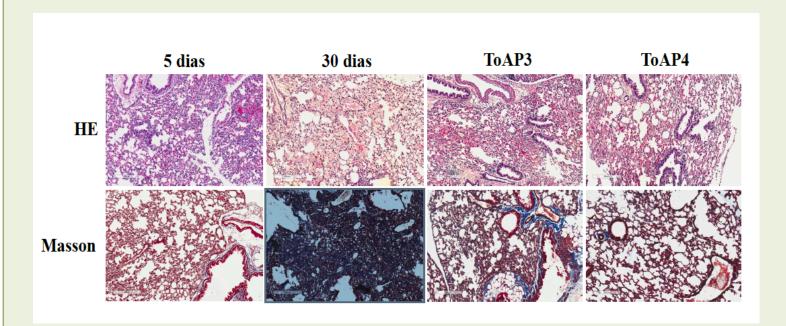
Metas - Atividades planejadas x realizadas

- Induzir a formação de fibrose por bleomicina, em modelo experimental murino, e tratar os animais com peptídeos anti-inflamatórios -
- Avaliar a atividade destes peptídeos em camundongos normais (não tratados com bleomicina) seguindo os mesmos protocolos;
- Avaliar a segurança biológica, analisando tecidos como fígado e rins, bem como a produção de enzimas hepáticas
- Nanoestruturar o(s) peptídeo(s) que apresentarem os melhores resultados e avaliar qual a via de inoculação, comparando com o peptídeo livre

- Correlacionar a migração celular nos camundongos com fibrose induzida com bleomicina e tratados ou não com peptídeos
- Definir quais os melhores peptídeos e realizar um tratamento em conjunto, para definir se existe sinergismo entre eles
- Avaliar o tempo de permanência do peptídeo que apresentou o melhor resultado, para definir tempo de eliminação no tecido
- Avaliar a segurança biológica, analisando tecidos como fígado e rins, bem como a produção de enzimas hepáticas

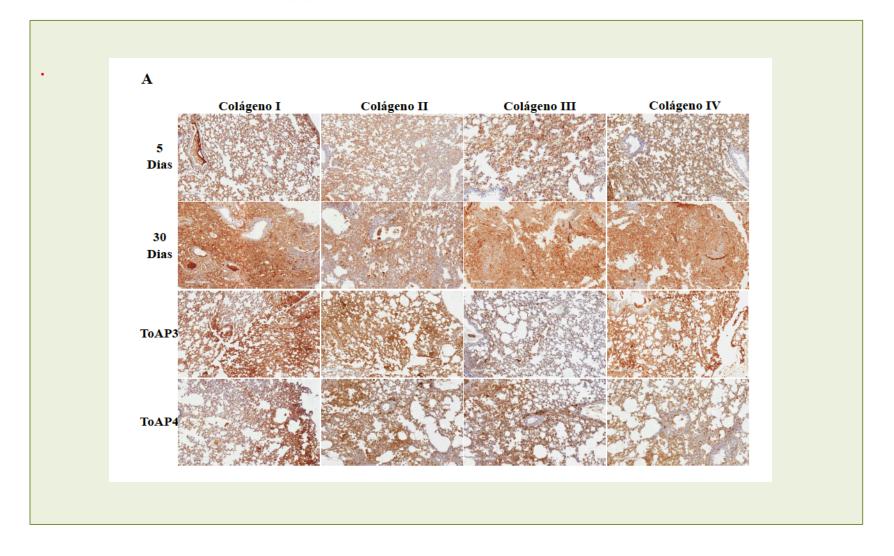


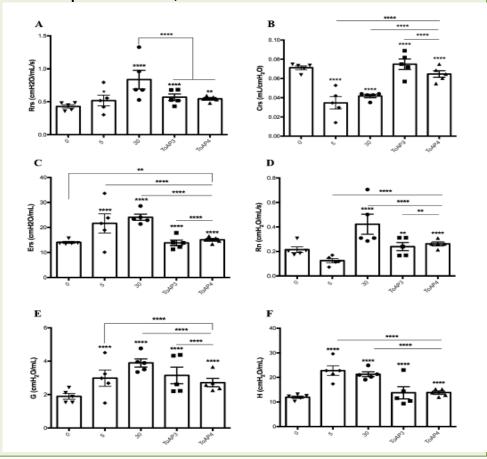
MINISTÉRIO DA SAÚDE



Resultados finais alcançados

Induzir a formação de fibrose por bleomicina, em modelo experimental murino, e tratar os animais com peptídeos anti-inflamatórios

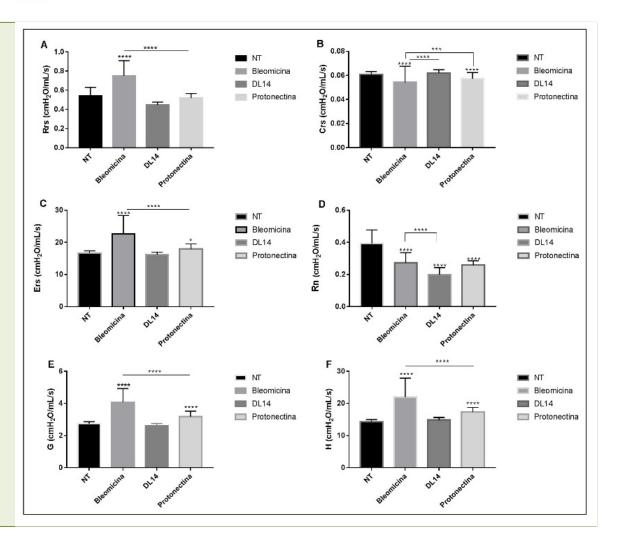




Avaliar a atividade destes peptídeos em camundongos normais (não tratados com bleomicina) seguindo os mesmos protocolos;

Avaliação da mecânica ventilatória dos animais tratados comToAP3 ou ToAP4. Camundongos BALB/c sofreram instilação IT de BLM (50µl, 5 U/ml) e depois de 5 dias iniciou-se tratamento com ToAP3 ou ToAP4. Quando completados 30 dias da instilação, esses animais foram sedados e anestesiados com uma solução de cetamina e xilazina (15 ml/kg e 0,1ml/kg, respectivamente) e submetidos a traqueostomia para serem acoplados ao ventilador mecânico. Foram averiguados os parâmetros de

- (A) resistência do sistema respiratório Rrs,
- (B) complacência do sistema respiratório- Crs,
- (C) elastância do sistema respiratório Ers,
- (D) resistênciaNewtoniana Rn,
- (E) amortecimento tecidual G
- (F) elastância tecidual H.
- *p<0.05



Foram averiguados os parâmetros de

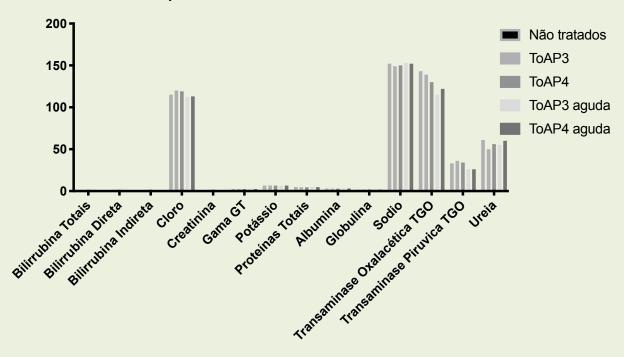
- (A) resistência do sistema respiratório Rrs,
- (B) complacência do sistema respiratório- Crs,
- (C) elastância do sistema respiratório Ers,
- (D) resistênciaNewtoniana Rn,
- (E) amortecimento tecidual G
- (F) elastância tecidual H.

•

Correlacionar a migração celular nos camundongos com fibrose induzida com bleomicina e tratados ou não com peptídeos

Tabela 3.2: Migração celular no peritônio dos camundongos induzida por ToAP3 ou ToAP4

Tipo Celular	4h			24 horas			72 horas					
	PBS	Tio	ToAP3	ToAP4	PBS	Tio	ToAP3	ToAP4	PBS	Tio	ToAP3	ToAP4
Neutrófilos	25	60*	13	15	11	0	0	0	11	21	13	9
Linfócitos	63	35	77	73	71	44	68	62	75	30	65	67
Monócitos	9	4	7	11	23	24	23	24	14	8	21	23
Macrófagos	0	1	0	0	1	3	1	1	0	40*	0	0



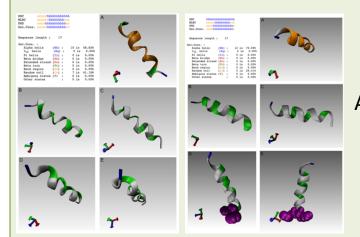
- Avaliar a segurança biológica, analisando tecidos como fígado e rins, bem como a produção de enzimas hepáticas e marcadores renais
- Todos os tecidos estavam com aspecto histológico normais e a análise do soro com enzimas hepáticas normais

Avaliar a atividade destes peptídeos em camundongos normais (não tratados com bleomicina)

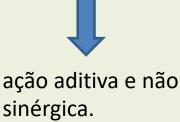
Tecido pulmonar de aspecto normal e padrão de citocinas não alterados (ambiente anti-inflamatório)

Avaliar o tempo de permanência do peptídeo que apresentou o melhor resultado, para definir tempo de eliminação no tecido

Não foram detectados os peptídeos no soro dos animais – alterações nas metodologia






Definir quais os melhores peptídeos e realizar um tratamento em conjunto, para definir se existe sinergismo entre eles

Análise da estrutura dos peptídeos

Atividade de modulação dos genes inflamatórios

Como os resultados poderão ser incorporados pelo SUS?

Genes pró-fibróticos								
		Tratamer	nto ToAP3	Tratamento ToAP4				
Símbolo	Descrição	Fold Change	P Value	Fold Change	P Value			
Aktl	Proto-oncogene Viral de Timoma 1	0.34	0.043212	0.83	0.570278			
Ccl11	Quimicina (motivo c-c) ligante 11	3.18	0.021522	4.41	0.323722			
Ccr2	Receptor de Quimicina (motivo c-c) 2	1.18	0.593361	0.14	0.043364			
Fasl	Fas ligante (superfamília de TNF, membro 6)	4.30	0.006065	0.20	0.060712			
Il1a	Interleucina 1 alfa	6.53	0.000911	3.19	0.239425			
Il1b	Interleucina 1 beta	2.27	0.046645	0.62	0.750740			
Itgav	Integrina alfa V	0.46	0.045766	1.79	0.375390			
Itgb6	Integrina beta 6	0.21	0.005560	0.83	0.678812			
Mmp14	Metaloperoxidase de matriz 14	0.18	0.015702	0.46	0.278868			
Mmp2	Metaloperoxidase de matriz 2	0.39	0.043679	1.86	0.365113			
Pdgfa	Fator de crescimento derivado de plaquetas, alfa	0.25	0.020553	1.18	0.536549			
Serpine1	Inibidor de peptidase serina (ou cisteína), clado E, membro 1	0.40	0.026483	0.24	0.000152			
Serpinh1	Inibidor de peptidase serina (ou cisteína), clado H, membro 1	0.21	0.025890	1.59	0.358584			
Smad4	Homólogo de MAD 4 (Drosófila)	0.92	0.778855	0.50	0.035041			
Tgfb1	Fator de crescimento transformador, beta 1	0.28	0.029165	2.23	0.338805			
Tgfb2	Fator de crescimento transformador, beta 2	0.47	0.019035	1.74	0.355887			
Tgfb3	Fator de crescimento transformador, beta 3	0.37	0.011840	0.71	0.155044			
Tgfbrl	Receptor do fator de crescimento transformador, beta 1	0.44	0.035557	0.71	0.142083			
Tgfbr2	Receptor do fator de crescimento transformador, beta 2	0.45	0.000265	1.34	0.038078			

A finalização da análise dos dados permitirá iniciar os ensaios clínicos de fase I utilizando apenas o TOAP3

